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Temperature-dependent pseudopotential between two pointlike electrical charges
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Pair distribution functions for particles electrically charged, at a temperatureT expressed in terms of density
matrices and corresponding pseudopotentials are studied, for distinguishable particles and for an electron pair.
Expansions with respect to the separation distance and to a quantum parameter (;T21/2) are carried out.
Approximate expressions are derived in the limits of high and low temperatures.
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I. INTRODUCTION

Some years ago, Gombert and co-workers studied
pseudopotentialVi j (r ) between two pointlike electrica
charges at a temperatureT @1,2#. More precisely, they evalu
ated the pair distribution function, which is expressed
terms of density matrices as

gi j ~r !5exp@2bVi j ~r !#5
r2~xi ,yj ,xi ,yj ,b!

r1~xi ,xi ,b!r1~yj ,yj ,b!
,

~1!

with b51/kBT and r 5uxi2yj u. i and j refer to the particle
species.xi andyj are the particle positions.r1 andr2 are the
one- and two-particle density matrices, respectively. Ther
a temperature, but no account is taken of the other parti
in the plasma~no screening!. It is a way to represent the
quantum effects at a small separation distancer. In the case
where r is much greater than the de Broglie length| i j

@5\(kBTm i j )
21/2 in which m i j is the reduced mass of th

pair of particles#, Vi j (r ) reduces to the Coulomb potential
For undistinguishable particles, the symmetry of the wa

functions has to be taken into account. In the case of
electrons, the pair distribution function is

gee~r !5exp@2bVee~r !#

5

r2~x,y,x,y,b!2
1

2
r2~x,y,y,x,b!

r1~x,x,b!r1~y,y,b!
. ~2!

At high temperature, i.e., in the case where the Lan
length (5uZiZj ue2b, Zie and Zje being the two electrica
charges which can be positive or negative! is smaller than
| i j , some simple expressions to approachVi j (r ) have been
proposed@1,2#.

In this paper, expansions ofgi j are carried out. There ar
two expansion parameters,x(5r /| i j ) and a quantum para
meterj:

j52ZiZje
2b/| i j ;T21/2, ~3!

which can be positive or negative. From this study, appro
mate expressions forVi j (r ) are also derived in the cases
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high and low temperatures. Section II is devoted to a pai
distinguishable particles and Sec. III to the electron pair.

This work is following the studies performed first b
Kelbg who calculated exactlyVee

no exc(r ), the pseudopoten
tial for an electron pair without taking account of the e
change between the two electrons, for very high tempera
(uju→0) @3#, then by Davies and Storer who studied com
pletely the case of zero separation and wrote expansions
respect to a quantum parameter related toj @4#. Rohdeet al.
@5# expressed the binary Slater sums~i.e., gi j or gee) as ex-
pansions with respect tor and proposed approximations. Nu
merical calculations were done by other authors: Storer@6#,
Barker @7#. Let us mention other pioneers in this field wh
are Trubnikov and Elesin@8#. More recently, Vieillefosse
also worked on this topic@9#.

These potentials are made to be used, in the framewor
classical statistical mechanics, in order to evaluate ther
dynamical quantities in a plasma as was done, for insta
by Kelbg and co-workers@10,11# and later by Deutsch and
co-workers @12–17#, who proposed simple forms to ap
proach these potentials@1# and used these simple approxim
tions. They were also used by other authors to deal w
transport problems@18,19# or with thermodynamical proper
ties of dense plasmas at high temperature@20#. As the quan-
tum mechanics is introduced via a two-body potential, it i
way to study plasma properties, which is not valid if th
density is too high. This way, quantum corrections to t
classical properties can be evaluated. These potentials
finite at the origin@4#. Thus, this method permits to avoid th
divergence which appears in the classical studies of plas
~with both charge signs!. We remark that, at high temperatu
(uZiZj ue2b,| i j ), it is necessary to introduce quantum co
rections in order to study the properties of a plasma.

II. DISTINGUISHABLE PARTICLES

Let

gi j ~r !5H gi j
s ~r !1gi j

b ~r ! for unlike charge signs,

gi j
s ~r ! for like charge signs,

~4!

wheregi j
b (r ) is the contribution due to the bound states a

gi j
s (r ) is that due to the scattering states.
©2002 The American Physical Society07-1
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A. Scattering state contribution, gij
s

gi j
s (r ) can be written as follows:

gi j
s ~r !5E d3k

~2p!3
expS 2

\2k2b

2m i j
D 1

4pE0

2p

dw

3E
0

p

du sin~u!CCCC* Y E d3k

~2p!3
expS 2

\2k2b

2m i j
D

5
| i j

3

~2p!1/2E0

`

dk k2 expS 2
1

2
| i j

2 k2D E
21

11

du CCCC* .

~5!

CC is the Coulomb wave function@21#:

CC5exp~2ap/2!G~11 ia!exp~ ikru!

3 1F1„ia,1;2 ik~r 2ru !…, ~6!

wherea5ZiZje
2b/| i j

2 k, u5cosu, andu is the angle (r ,k).

1F1 is the confluent hypergeometric function. Express
CC , gi j

s becomes

gi j
s ~r !5~2p!1/2| i j

3 E
0

`

dk k2a

expS 2
1

2
| i j

2 k2D
exp~2pa!21

3E
0

2

dv 1F1~2 ia,1;ikrv !1F1~ ia,1;2 ikrv !.

~7!

Making use of the dimensionless quantitiesK5u2au21

5k| i j /2uju andx5r /| i j , the last equation is rewritten in th
form

gi j
s ~x!528~2p!1/2j3E

0

`

dK K
exp~22j2K2!

exp~ep/K !21
A, ~8!

with

e52uju/j ~9!

and

A5
1

2E0

2

dv1F1S 2
e i

2K
,1;2i ujuKxv D

3 1F1S e i

2K
,1;22i ujuKxv D . ~10!

A has been expanded in increasing powers ofK2 with the
result

A5 (
p50

`

~21!p~4jKx!2p(
q50

`

C~p,q!~22jx!q. ~11!

C(p,q), in which p andq are integers, is a number define
as
06640
g

C~p,q!5
1

2p1q11 (
n50

2p

~21!n

3 (
m50

q Sm1n
(m) Sq2m12p2n

(q2m)

@~m1n!! ~q2m12p2n!! #2
, ~12!

whereS m
(n) (n<m) are the Stirling numbers of the first kin

@22#. Note that

C~p,0!5dp0 and C~0,q!5
~2q!!

~q11!! ~q! !3
. ~13!

Then, gi j
s (x) is put in a form involvingp derivatives with

respect toj2 as follows:

gi j
s ~x!5gi j

s ~0!28~2p!1/2j3

3 (
p50

` S 2pdp

d~j2!pE0

`dK K exp~22j2K2!

exp~ep/K !21 D
3 (

q51

`

C~p,q!~22jx!2p1q. ~14!

The integral overK is known, it was evaluated by Davie
and Storer in the calculation ofg(0). Thus,

gi j
s ~x!5gi j

s ~0!1j3(
p50

` F S 1

j

d

dj D p

@j23gi j
s ~0!#G

3 (
q51

`

C~p,q!~22jx!2p1q, ~15!

where@4#

gi j
s ~0!511~2p!1/2j1 (

k50

`

~21!k
2k/211

k!
GS k

2
11D

3z~k12!ujuk12. ~16!

z(n) are Riemann’sz functions. Therefore, Eq.~15! be-
comes

gi j
s ~x!5 (

p50

`

~28x2!pF ~3/2!p1p! ~2p!1/2j

1 (
k50

`

~21!k
2k/211

k!
GS k

2
11D z~k12!

3S 12k

2 D
p

ujuk12G (
q50

`

C~p,q!~22jx!q. ~17!

B. Bound state contribution, gij
b

Now we are interested ingi j
b , the part of the pair distri-

bution function due to the bound states. It reads
7-2
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gi j
b ~r !5~2p!3/2| i j

3 (
n51

`

(
,50

n21

(
m52,

1,

exp~2bEn!

3
1

4pE0

2p

dwE
0

p

du sinuCn,m~r ,u,w!Cn,m* ~r ,u,w!.

~18!

Cn,m and En are the wave functions and the energies
bound states corresponding to the quantum numbersn, ,,
andm @21#. Expressing them, the last equation becomes

gi j
b ~r !52~2p!1/2

| i j
3

a3 (
n51

`
1

n4
expS 2

2r

na
2bEnD

3 (
,50

n21

~2,11!~n2,21!! ~n1, !!

3F (
k50

n2,21
~22r /na!,1k

~n2,2k21!! ~2,1k11!!k! G2

,

~19!

with En5ZiZje
2/(2an2) anda5\2/(m i j uZiZj ue2). Hence,

gi j
b ~x!52~2p!1/2j3(

n51

`
1

n4
expS j2

2n2
2

2

n
jxD

3 (
,50

n21

~2,11!~n2,21!! ~n1, !!

3F (
k50

n2,21
~22jx/n!,1k

~n2,2k21!! ~2,1k11!!k! G2

,

~20!

where x5r /| i j . In this case,j is positive. gi j
b (x) can be

expanded with respect tox andj, with the result

gi j
b ~x!5gi j

b ~0!12~2p!1/2j3

3 (
p51

`

(
k50

`
z~2k12p13!

2kk!
j2k(

q51

`

C~p,q!

3~22jx!2p1q. ~21!

C(p,q) is the number defined by Eq.~12!. In the last equa-
tion, the sum overk can be rewritten in order to introduc
gi j

b (0),

(
k50

`
z~2k12p13!

2kk!
j2k

5
2p11

p1/2

dp

d~j2!p(k50

`

2k

GS k1
3

2D
~2k11!!

z~2k13!j2k.

~22!
06640
f

Making use of the expansion ofgi j
b (0) @4#, gi j

b (x) is then
expressed in the form

gi j
b ~x!5gi j

b ~0!1j3(
p50

` F S 1

j

d

dj D p

@j23gi j
b ~0!#G

3 (
q51

`

C~p,q!~22jx!2p1q. ~23!

C. General expansion ofgij

Equations~15! and~23! are very similar. Thusgi j (x) can
be written as

gi j ~x!5gi j
s ~x!1

12e

2
gi j

b ~x!

5gi j ~0!1j3(
p50

` F S 1

j

d

dj D p

@j23gi j ~0!#G
3 (

q51

`

C~p,q!~22jx!2p1q. ~24!

The expansion ofgi j (0) is

gi j ~0!511~2p!1/2j1 (
k50

`
2k/2 11

k!
GS k

2
11D z~k12!jk12.

~25!

Therefore, the explicit expansion ofgi j (x) with respect tox
andj @corresponding to Eq.~17! for gi j

s ] is

gi j ~x!5 (
p50

`

~28x2!pF ~3/2!p1p! ~2p!1/2j

1 (
k50

`
2k/211

k!
GS k

2
11D z~k12!S 12k

2 D
p

jk12G
3 (

q50

`

C~p,q!~22jx!q. ~26!

D. Small separation behavior

The behavior nearx50 of the pair distribution and of the
corresponding pseudopotential is deduced from the last e
tions. It reads

gi j ~x!5gi j ~0!S 122jx12j2x21
2

3
jx32

10

9
j3x3D

2
2

9
j2x3

d

dj
@gi j ~0!#1O~x4! ~27!

and
7-3
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| i j

ZiZje
2

Vi j ~x!5
1

j
ln@gi j ~x!#5Ai j S 12

2

9
jx3D22x1

2

3
x3

1
2

9
j2x32

2

9
j2x3

dAi j

dj
1O~x4!, ~28!

with

Ai j 5
| i j

ZiZje
2

Vi j ~0!5
1

j
ln@gi j ~0!#

5~2p!1/21pS p

3
21D j1O~j2!. ~29!

We verify that, forx50, the slope of (| i j /ZiZje
2)Vi j (x) is

22,

F d

dx S | i j

ZiZje
2

Vi j ~x!D G
x50

522. ~30!

This is a known result@23#. Figure 1 in Ref.@2# showsAi j as
a function ofj2 for e511 and21 @Eq. ~9!#.

In the case of small distance, an approximation togi j is

gi j ~x!5gi j ~0!exp~22jx! for small ujxu. ~31!

Here, ‘‘small distance’’ meansr ,|/j.

E. High temperature limit

The high temperature limit is the smalluju limit. Starting
from expansion~26! and taking account of Eq.~12!, we ar-
rive at

gi j ~x!511~2p!1/2j24jx(
p50

`
~3/2!p~28x2!p

~2p12!! ~2p11!

1
p2

3
j224~2p!1/2j2x(

p50

`
p! ~28x2!p

~2p12!! ~2p11!

18j2x2(
p50

`
~3/2!p~28x2!p

~2p13!! ~2p12! (
q51

2p11
1

q

24j2x2(
p50

`
~3/2!p~28x2!p

2p13

3 (
q51

2p11
~21!q

q!q~2p122q!! ~2p122q!
1O~ uju3!.

~32!

In the last equation, it can be verified that the first summat
over p can be expressed in terms of exp(22x2) and of the
error functionF(21/2x). Then, this equation is rewritten a
follows:
06640
n

gi j ~x!511
j

x
@12exp~22x2!#1~2p!1/2j@12F~21/2x!#

1
p2

3
j222~2p!1/2j2x

3 (
p50

`
~24x2!p

~2p11!!! ~p11!~2p11!

12j2x2(
p50

`
~22x2!p

~p11!! ~2p13! (
q51

2p11
1

q

3S 1

p11
2

~22p22!q

q! ~2p122q! D1O~ uju3!. ~33!

Thus, in the high temperature limit, the pseudopotential i

| i j

ZiZje
2

Vi j ~x!5
1

x
@12exp~22x2!#1~2p!1/2

3@12F~21/2x!#1O~ uju! ~34!

or

Vi j ~r !5
ZiZje

2

r F12expS 2
2r 2

| i j
2 D G1

ZiZje
2

| i j
~2p!1/2

3F12FS 21/2r

| i j
D G1O~e4!, ~35!

which is exactly the potential derived by Kelbg and his c
workers@3,11#. It is easy to write the term of the order ofj
~or the squared interactione4) and the following ones cor-
recting this potential. We proposed@17# an approximate ex-
pression forVi j (r ). This is the Kelbg potential, which is
modified in such a way that the value at origi
(2p)1/2ZiZje

2/| i j , is replaced with the exact one
Ai j ZiZje

2/| i j whereAi j is defined by Eq.~29!. This approxi-
mate expression is

Vi j ~r !.
ZiZje

2

r F12expS 2
2r 2

| i j
2 D G1

ZiZje
2

| i j
Ai j

3F12FS 2~p!1/2r

Ai j | i j
D G . ~36!

It reproduces exactly the value at the origin, the slope at
origin, and as expected there is no term inr 2 in the r expan-
sion. Recently, Wagenknecht and co-workers have propo
exactly the same approximation@24#.

Rahal proposed another generalization of Eq.~36! in or-
der to represent the interaction between an electron an
hydrogenlike ion. Doing that, he took account of the i
extension@25#.
7-4
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F. Low temperature limit

To study the low temperature limit~i.e., the high uju
limit !, the results due to Davies and Storer@4# are used and
generalized whenx does not equal 0. The two casese5
11 ande521 are considered separately.

1. Case of like charge signs

In this casej is negative. Davies and Storer estimat
gi j (0) by the steepest descent method and wrote it in
form

gi j ~0!'
2

31/2
~22pj!4/3expS 23

~2pj!2/3

21/3 D for large uju,

~37!

which gives

j3S 1

j

d

dj D p

j23gi j ~0!

'
~21!p2(2p17)/3p2 ~p12)/3

31/2~2j!4 (p21)/3

3expS 23
~2pj!2/3

21/3 D for large uju.

~38!

In the last equation, only the main term~in the largeuju
limit ! is kept. Starting from Eq.~24!, it is possible to write

gi j ~x!'
2

31/2
~22pj!4/3expS 23

~2pj!2/3

21/3 D (
p50

`

~21!p

3@2~22pj!1/3x#2p(
q50

`

C~p,q!

3~22jx!q for large uju. ~39!

This equation can be rewritten in terms of increasing pow
of x. For each power ofx, the main term~for large uju)
corresponds top50. Therefore, taking into account onlyp
50 and expressingC(0,q) @Eq. ~13!#, Eq. ~39! becomes

gi j ~x!'gi j ~0! (
q50

`

C~0,q!~22jx!q

'
2

31/2
~22pj!4/3expS 23

~2pj!2/3

21/3 D
3 (

q50

`
~2q!! ~22jx!q

~q11!! ~q! !3
for large uju. ~40!

Note that the first terms in the last summation equal the
terms in the expansion of exp(22jx) until orderx2. Thus we
can propose, in the case of largeuju and smallujxu, another
approximation forgi j :
06640
e

rs

st

gi j ~x!'
2

31/2
~22pj!4/3expS 23

~2pj!2/3

21/3
22jxD

for large uju and small ujxu. ~41!

2. Case of unlike charge signs

In this case, as noted by Davies and Storer, the bo
states dominate for largej ~which is positive!. Thus Eq.~20!
yields

gi j ~x!'2~2p!1/2j3expS j2

2
22jxD

for large j and small jx. ~42!

All the last approximations@Eqs. ~40!–~42!# have good
behaviors for small x: the expansions of
@| i j /(ZiZje

2)#Vi j (x)„5 ln@gij(x)#/j… in increasing powers of
x are the good ones until the second order.

Note that the approximations~41! and~42! are valid only
in the case where the separation distance is small~see the
end of Sec. II D!.

III. PAIR OF ELECTRONS

A. Expansion of gee

In the case of a pair of electrons, the wave functions h
to be antisymmetric. Thus, if the pair of electrons is in
triplet state, the wave function is antisymmetric for the e
change of the positions, and if the pair of electrons is in
singlet state, the wave function is symmetric for the e
change of the positions. Letgee

T andgee
S be the pair distribu-

tion functions for two electrons in a triplet state and in
singlet state, respectively. Forgee

T , Eq. ~7! is modified as

gee
T ~r !5

r2~x,y,x,y,b!2r2~x,y,y,x,b!

r1~x,x,b!r1~y,y,b!

5S p

2 D 1/2

| i j
3 E

0

`

dk k2a

expS 2
1

2
| i j

2 k2D
exp~2pa!21 E

21

11

du

3@eikru
1F1„2 ia,1;ik~r 2ru !…

2e2 ikru
1F1„2 ia,1;ik~r 1ru !…#

3@e2 ikru
1F1„ia,1;2 ik~r 2ru !…

2eikru
1F1„ia,1;2 ik~r 1ru !…#

528~2p!1/2j3E
0

`

dK K
exp~22j2K2!

exp~p/K !21
~A2B!,

~43!

with
7-5
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B5
1

2E21

11

du1F1S 11
i

2K
,1;2ijKx~12u! D

31F1S 12
i

2K
,1;22ijKx~11u! D , ~44!

K5
k \2

e2me

5k|ee/2uju, and x5r /|ee, ~45!

whereme is the electron mass. In a similar manner,gee
S reads

gee
S ~r !5

r2~x,y,x,y,b!1r2~x,y,y,x,b!

r1~x,x,b!r1~y,y,b!

528~2p!1/2j3E
0

`

dK K
exp~22j2K2!

exp~p/K !21
~A1B!.

~46!

Therefore, we get the relation

gee~x!5
3

4
gee

T ~r !1
1

4
gee

S ~r !

528~2p!1/2j3E
0

`

dK K
exp~22j2K2!

exp~p/K !21 S A2
1

2
BD .

~47!

A is expressed in the preceding section@Eq. ~11!#. B has also
been expanded in increasing powers ofK2:

B5 (
p50

`

~21!p~4jKx!2p(
q50

`

D~p,q!~22jx!q, ~48!

with

D~p,q!5
1

~2p1q11!! (
n50

2p

~21!n

3 (
m50

q S m1n11
(m11) S q2m12p2n11

(q2m11)

~m1n!! ~q2m12p2n!!
. ~49!

In Eq. ~47!, the integration overK is evaluated exactly a
done in the case of distinguishable particles. Then,gee be-
comes
06640
gee~x!5j3(
p50

` F S 1

j

d

dj D p

@2j23gee~0!#G
3 (

q50

` FC~p,q!2
1

2
D~p,q!G~22jx!2p1q.

~50!

Note that gee(0) is half the value ofgee
no exc(0), the pair

distribution function at the origin, in the case where the e
change is not taken into account@4#. Thus, 2gee(0) is ex-
pressed by Eq.~25!. The expansion ofgee in increasing pow-
ers ofx andj @analogous with Eq.~26!# reads

gee~x!5 (
p50

`

~28x2!pF S 3

2D
p

1p! ~2p!1/2j1 (
k50

`
2k/211

k!

3GS k

2
11D z~k12!S 12k

2 D
p

jk12G
3 (

q50

` FC~p,q!2
1

2
D~p,q!G~22jx!q. ~51!

Compare C(p,q) @Eq. ~12!# with the term @C(p,q)
2 1

2 D(p,q)#, which is

C~p,q!2
1

2
D~p,q!5

1

~2p1q11!! (
n50

2p

~21!n

3 (
m50

q S m1n11
(m11) S q2m12p2n11

(q2m11)

~m1n!! ~q2m12p2n!!

3F ~2p1q!!

~m1n!! ~q2m12p2n!!
2

1

2G .
~52!

They differ by the term2 1
2 in the factor @(2p1q)!/

(m1n)!(q2m12p2n)! 2 1
2 #. This is due to the exchang

within the pair of electrons.

B. Small separation behavior

From Eq. ~50!, the behaviors ofgee and Vee nearx50
can be deduced. Thus,

gee~x!5gee~0!S 122jx12x21
8

3
j2x22

4

3
jx32

16

9
j3x3D

2
2

3 S jx22
2

3
j2x3D d

dj
gee~0!1O~x4! ~53!
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and

|ee

e2
Vee~x!5

1

j
ln@gee~x!#52

ln~2!

j
1

|ee

e2
V ee

no exc~0!

22x1
2

j
x21

2

3
jx21

8

3
x31

8

9
j2x3

2
2

3S x22
2

3
jx3D d

dj
ln@2gee~0!#1O~x4!

52
ln~2!

j
1AeeS 12

2

3
x21

4

9
jx3D

22x1
2

j
x21

2

3
jx21

8

3
x31

8

9
j2x3

2
2

3S jx22
2

3
j2x3D dAee

dj
1O~x4!. ~54!

Aee is defined as is done in the case of distinguishable p
ticles @see Eq.~29!#, i.e.,

Aee5
|ee

e2
Vee

no exc~0!5
1

j
ln@gee

no exc~0!#

5
1

j
ln@2gee~0!#5~2p!1/21pS p

3
21D j1O~j2!,

~55!

whereVee
no exc(0) is the pseudopotential at the origin if th

exchange between the two electrons is neglected. Equa
~54! can be rewritten as follows:

Vee~r !5kBT ln~2!1Vee
no exc~0!2

2e2r

|ee
2

1O~r 2!. ~56!

Looking at the last equation, we remark thatkBT ln(2) is a
purely exchange term. In the expansion ofVee(r ) with re-
spect tor, there is a term of the order ofr 2, in contrast to the
unlike particle case. Note that the slope at the origin has
same value as in the case of unlike particles. We have c
pared Eq.~53! with the results of Isihara and Wadati@26#
@see Eq.~2.13! in their paper#. We do not completely agre
with them.

C. High temperature limit

In this limit, gee(x) expressed by Eq.~51!, is expanded
with respect toj:
06640
r-

on

e
-

gee~x!5
1

2
@11~2p!1/2j22jx#

1 (
p51

`

~28x2!p@~3/2!p1p! ~2p!1/2j#

3H 2
1

2~2p11!!
22jxFC~p,1!2

1

2
D~p,1!G J

1O~j2!, ~57!

with

C~p,1!2
1

2
D~p,1!5

1

~2p12!! S 1

2p11
2 (

q50

p21
1

2q11D .

~58!

This expansion is then rewritten as

gee~x!511~2p!1/2j2
1

2 (
p50

`
~3/2!p~28x2!p

~2p11!!

24jx(
p50

`
~3/2!p~28x2!p

~2p12!! ~2p11!

2S p

2 D 1/2

j (
p50

`
p! ~28x2!p

~2p11!!

12jx(
p50

`
~3/2!p~28x2!p

~2p12!! (
q50

p
1

2q11
1O~j2!

512
1

2
exp~22x2!1

j

x
@12exp~22x2!#

1~2p!1/2j@12F~21/2x!#2~2p!1/2jG~x!1O~j2!,

~59!

where

G~x!5
1

21F1S 1,
3

2
;2x2D1

1

2~2p!1/2x

3 (
p51

`
~22x2!p

p! (
q50

p21
1

2q11

5
1

2
exp~22x2!F 1F1S 1

2
,
3

2
;2x2D

2
21/2x

p1/2 2F2S 1,1,
3

2
,2,2x2D G ~60!

5
1

2
exp~22x2! (

n50

`
~221/2x!n

~n11!GS n

2
11D . ~61!

In Eq. ~59!, the Gaussian term1
2 exp(22x2), corresponds to

the case of the ideal Fermi gas~exchange without interac
tion!, the two following terms are Kelbg’s potential~interac-
7-7
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tion without exchange!, and (2p)1/2jG(x) is an exchange
term ~with interaction!. G(x) decreases quickly asx in-
creases. Equations~57! and~60! are in agreement with Mat
suda’s results@27#. It can be verified thatnq

ex evaluated by
Trubnikov and Elesin@8# @see Eq.~1.15! in their paper# is
exactly

nq
ex~x!52 1

2 exp~22x2!2~2p!1/2jG~x!, ~62!

in agreement with us. The pseudopotential to Eq.~59! is

|ee

e2
Vee~x!5

1

j
ln@gee~x!#5

1

j
lnF12

1

2
exp~22x2!G

1F12
1

2
exp~22x2!G21

3H 1

x
@12exp~22x2!#1~2p!1/2

3@12F~21/2x!2G~x!#J 1O~ uju! ~63!

or

Vee~r !52kBT lnF12
1

2
expS 2

2r 2

|ee
2 D G

1F12
1

2
expS 2

2r 2

|ee
2 D G21

3H e2

r F12expS 2
2r 2

|ee
2 D G1

e2

|ee
~2p!1/2

3F12FS 21/2r

|ee
D2GS r

|ee
D G J 1O~e4!. ~64!

As we have done in the case of distinguishable particles,
propose an approximate expression forVee(r ):

Vee~r !.2kBT lnF12
1

2
expS 2

2r 2

|ee
2 D G

1F12
1

2
expS 2

2r 2

|ee
2 D G21H e2

r F12expS 2
2r 2

|ee
2 D G

1
e2

|ee
AeeF12FS 2~p!1/2

Aee

r

|ee
D

2GS ~2p!1/2

Aee

r

|ee
D G J . ~65!
06640
e

The last expression reproduces the good value at the or
the good slope at the origin, and its larger behavior ise2/r ,
the Coulomb potential.

D. Low temperature limit

For this limit, we process exactly as in the case of dist
guishable particles. Using the relation~38! and expressing
C(0,q)2 1

2 D(0,q), Eq. ~50! becomes

gee~x!'
2~22pj!4/3

31/2
expS 23

~2pj!2/3

21/3 D
3 (

q50

`
~22jx!q

~q11!!q!

3F ~2q!!

~q! !2
22q21G for large uju. ~66!

As is done for unlike particles, we propose another appro
mation:

gee~x!'
~22pj!4/3

31/2
expS 23

~2pj!2/3

21/3
22jxD

for large uju and small ujxu. ~67!

The last approximation is half of approximation~41!, which
is in agreement with the smallx behavior.

IV. CONCLUSION

Pair distribution functions@Eqs.~1! and ~2!# and the cor-
responding pseudopotentials have been studied. The ex
sions with respect tox andj are exactly derived. Some ex
pressions are proposed in order to approach
pseudopotentials. They fit the known limits. These expr
sions are made to be used in the framework of classical
tistical mechanics instead of the Coulomb potential. This
valid for low enough densities. In order to neglect the ca
where three particles are near, the mean interparticle dista
has to be larger than the de Broglie length.

In the case of high temperature, the approximations~36!
and~65! are more accurate than those proposed by us ea
@Eqs.~5.10! or ~5.19! in Ref. @1## and already used to stud
plasma properties@12–20#. For infinite temperature (uju
→0), Eq. ~36! yields the Kelbg potential@3#, which is an
exact result. The simple approximate expressions propo
in Ref. @1# can be used easily and permit some calculatio
without any computer. This way, quantum corrections
classical properties of plasmas can be simply studied. Bu
accurate comparisons with exact quantum results, the
proximations proposed here are better.
7-8
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